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AbstracL We study the analytic properties of regularized functional determinants tor 
ordinary differential operators. 'lb this end a new regularization scheme is introduced. 
Relations between different approaches are analysed and the mnnection k t w e e n  the 
presence of divergent traces and regularization dilferences is discussed. 

1. Introduction 

The necessity of extending the concept of the determinant of a finite square matrix to 
the infinite-dimensional case of elliptic operators acting on a Vector bundle naturally 
arises from the path integral formulation of quantum physics. Several extensions- 
procedures that make sense in a wider range and when applied to the finite- 
dimensional case yield the standard determinant-have been proposed for defining 
the determinant. However, there is not complete agreement between the different 
approaches. Thus, it seems to be relevant to state clearly the relation between 
different results and the origin of these differences. 

A widely used approach is the C-function determinant based on the complex 
powers of an elliptic operator L [l]. Since C(s) G T t [ L - " )  admits a meromorphic 
extension to the whole complex plane and in particular it is analytic in the origin, 
one can set Det,(L) E exp(-(-'(0)). It is possible to show that Det((L - A )  is 
an analytic function of the parameter X and has a zero when X is an eigenvalue of 
L ;  the order of each zero is given by the algebraic multiplicity of the corresponding 
eigenvalue [Z]. 

Another elegant method originally presented by Carleman [3] (see [4] for a 
modern and quantum field theory oriented presentation) is the p-determinant for Zp 
operators, i.e. operators A such that .If(AP) converges. In this approach, given an 
operator A E JP, one constructs an associated operator A with finite trace and defines 
Det , ( l+yA) as the Fredholm determinant of ( l + r A )  [SI. This regularization, as it 
occurs with the C-function determinant, preserves the relation between the spectrum 
of A and the zeros of the determinant as a function of y (see section 3 for details). 

In any case, one can see that some finite-dimensional properties are lost when 
extending the determinant definition, while others remain valid. Thus, choosing some 
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properties to he preseNed appears to he a guiding principle to define an appropriate 
extension. That is the basic idea of the method proposed by Coleman [6]  for defining 
the ratio of determinants of one-dimensional Schradinger operators. He introduced 
a complex parameter y in the operators in such a way that one would expect a 
precise characterization of the zeros and poles of the determinant as a meromorphic 
function of y. Then, from the solutions of the homogeneous initial value problems 
associated with the operators, a function that exhibits the same location and order 
of zeros and poles is built. It is this function that is taken to be the regularized 
determinant. This method was extended by Dreyfus and Dym [7] to the case of 
quotients of two ordinary differential operators of the same order with the same 
principal and suh-principal symbols, both acting on functions of L2([a, b ] ) .  

We pursue this latter idea to extend the method to the following case: we consider 
a family of ordinary differential operators L(y)  sharing only the principal symbol and 
acting on sections of a vector bundle E = [a, b] x Cp. ?b definine the quotient of 
determinants of one of this operators, L ( y ) ,  and a non-singular (fixed) one, L(O), 
we introduce a function of the parameter 7. We require this function be entire and 
take the values one for the identity operator and zero whenever the operator L(y)  
fails to be invertible. We also require that the order of each of these zeros equal the 
algebraic multiplicity of the corresponding zero mode of L(y).  

It is easy to see that the requested characterization admits the presence of a factor 
of the form exp(yg(y)) multiplying the result, where g is an arbitrary entire function. 
Moreover, since Detc and Det, satisfy the same characterization, one should expect 
that the corresponding results differ for most in factors of this kind. In fact, when we 
compare our method with other known regularization schemes we see that a factor 
of this kind makes just the difference between the results. So the arbitrary nature 
of this factor appears to be intrinsic to the very concept of determinant for infinite- 
dimensional operators. Moreover, they can be seen as (finite) counterterms in the 
frame of renormalization theory. As we shall see in section 3, this fact arises from 
the presence of ill-defined traces in the loop expansion of the determinant. 

Finally, let us remark that, though being restricted to one-dimensional operators 
acting on a finite interval, our approach could be useful even in quantum field theory 
in problems such that their symmetries and boundary conditions permit reduction to, 

The paper is organized as follows: in section 2 we state the problem to be 
considered and present the regularization scheme. In section 3 we compare our results 
with the 2-determinant and the <-function determinant and discuss the ambiguity 
between different approaches. In section 4 we illustrate with a simple example the 
previous results. 
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ki iisiaiice, a iadial icjoidiiiate (sei ki aai i ipk igj). 

2. Definition of the Adeteminant  

We shall now state precisely the problem to be studied. Let us consider elliptic 
ordinary differential operators of order m acting on sections of a vector bundle 
E = [a, b] x Cp Over [a, b] ,  having the following form 

L ( r ) = P + r Q  (1) 

(2) P = p"'(x)-+ . . . +  Po(.) 

where 
d"' 

dx"' 
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and y is a complex parameter. Ellipticity means that det p , ( z )  # 0 for each 
I E [ a , b ] .  The coefficients p i ( r )  and q,(z)  are T x T complex matrix valued 
functions having i continuous derivatives. 

Let y(z) denote the sections of the vector bundle 

where fj E C"'([Q,~]) .  Let also Q denote the mr-tuple built up by joining together 
y(z), y'(z) ,  . . . , ? p - f ) ( z ) .  

In order to have elliptic boundaly conditions, we impose 

M , e ( U )  + MbQ(6) = 0 (5) 

where Ma and M ,  are constant complex mr x mr matrices satisfying 

rank([M,,Mb]) = mr. (6) 

Throughout this paper we will assume that P is non-singular with these boundary 
conditions. 

Using all this notation, we are considering the following elliptic boundary value 
problem 

It is our aim to construct a function A(y)  associated with the operator L ( y )  
whose zeros are related to the singular L's. In order to do so, we propose the 
following mechanism: first, we choose the fundamental matrix Y ( z , y )  of equation 
(7)  satisfying the initial conditions 

Y(Q,-/) = 1,,,,,. (9) 

Then, we define the complex matrix function 

u(Y) = M , Y ( Q , T )  + M b Y ( b , y )  (10) 

and finally, we set 

A(?) = det(U(y)). (11) 

Now, let us discuss some properties of the function A(y) .  They naturally will 
lead us to relate A(y)  with the determinant of L(y) .  
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Properties. 
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(a) A(y) is an entire function of the complex variable y. 
@) A(?) grows with finite order p < 1. 
(c) A(y) = 0 if and only if L(y)  has zero as eigenvalue. 
(d) The order of the zeros of A(y)  equals the algebraic multiplicity of 0 

(e) A(y) can be expanded as an infinite product of the form 
eigenvalue of L(y) .  

where yi  are the zeros of A(y), repeated as many times as indicated by their order. 
( f )  Q and 0 are given by the expressions 

p = log(det U ( 0 ) )  

where U(y )  is the function defined in equation (IO). 

Bmf. 

M ,  do not depend on y. Thus A(?) is entire. 

systems of differential equations is straightfonvard. 

(a) Since the coefficients of L(y)  are analytic in y, so are the solutions of equation 
(7) with initial values independent of y. On the other hand, the matrices Ma and 

0 
@) and (d) We refer the reader to lemmas 3, 6 and 7 in [7]. The extension to 

0 
(c) The general solution with its m - 1 first derivatives can be written as 

G(z3-Y) = Y ( 2 , Y ) C  (15) 

where C is a mr-tuple of complex constants. Imposing the boundary conditions to 
LL yILilu3 
:* ..:-,A" 

[ M , Y ( a , y )  f M,Y(b,r)lC = 0. 

Thus there is a non-trivial solution if and only if A(?) = 0. 

(16) 

0 
(e) This fact follows from Hadamard's factorization theorem [9], whose hypothesis 

are satisfied by virtue of properties a and b. Notice that oi and 4 are not determined 
by the theorem. In the case that P was singular, and thus A(0) = 0, a factor y b  
would also appear in equation (12), where U would be the order of the zero of 

( f )  p is easily evaluated by computing A(0) in equation (12). Tb evaluate a we 
A(0). 0 

compute &logA(y)l,=, using equation (12) and the well known result 

that holds whenever det U ( y )  # 0. 0 
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Properties (a) to (e) show that A(y) plays a similar role to that of the 
characteristic polynomial of P + rQ in finite dimension, because it respects the 
relation between zeros and eigenvalues. 

The exponential factors inside the product symbol in equation (12) are necessary 
and sufficient to make convergent the infinite product. The factors outside the product 
symbol depend on the proposed construction. Any value can be given to the factor 
eo just by a redefinition of the matrices Ma and M ,  (notice that a left-multiplication 
by any non-singular matrix M does not change the boundary conditions but adds 
the factor Det M to the value of eo). However, if we normalize the function A to 
take the value one for y = 0 by considering the ratio A(y)/A(O), this ambiguity is 
removed. 

The remaining factor ey" appears to be. inherent to this generalization. Property 
(f) gives the explicit expression for this factor in terms of the proposed construction. 

Following the considerations above we arrive to the natural definition: 

DetAL(r) = a(y) 
DetAL(0) - A(0) ' 

Remark. For the purpose of computation it is important to notice that  the matrix 

that appears in the expression for a can be obtained by evaluating in I = b the 
solution of the equation 

with homogeneous initial conditions in z = a. 

3. Relation with other regularizations 

in this section we are going to compare the Adeterminant of i(yj with other 
regularization schemes. In doing so, we will verify that definition (18) is related to 
well known regularized results through finite local counterterms. 

'Ib begin with, we are going to compare our result with the p-determinant [SI, 
which applies in general to operators of the form 

1 + A  (2') 

where A E .?,, i.e. Tt( A p )  is a well defined quantify. For them, it is possible to show 
that 

admits the Fredholm determinant. Then the definition of the p-determinant is as 
follows: 

Detp( 1 + A )  = det( 1 + A )  (23) 
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where det stands for the Fredholm determinant. In terms of the eigenvalues X i  of 
the operator A, one can write 

R E Gamboa et a1 

N ~ ~ P A  Ggt *e nnemtnr ,4 mist be cf Eegative nrder te b-!ofi- +n fer s=me -r----. 6 L" u p  
natural p. In our case, since L ( y )  are elliptic operators of order m > 0, it is natural 
to consider the pdeterminant of the operator 

L(r)L-'(O) = 1 + y Q P - '  (25) 

which should be related to the quotient A(y)/A(O). 

Tr(( QP-')P) is finite is p = 2. 

Lemma 1. The operator Q P - '  belongs to f 2  (Hilbert-Schmidt class). 

PrmJ The kernel of P-I is the Green function P - ' ( z ,y )  which has the following 

We are going to prove in the following lemma that the minimum p for which 

nmnPniPr. r.-y-..."". 

(26) 
dk 

%P- ' (x ,y)  i s c o n t i n u o u s f o r k < m - 2  

This implies that the kernel of Q P - '  has at most a jump discontinuity along the 
diagonal. Thus ?k(QP-') is in general not well defined. The trace of is 
given by 

and the integral is convergent because the integrand is continuous almost everywhere 
0 in [ a ,  b] x [ a ,  b ] .  

Therefore, Detp( l  + y Q P - l )  makes sense for p 2 2. 
We are now ready to establish the relation between Dct,(L(y)L-'(O)) and the 

quotient in equation (18). 'Ib this end we prove a lemma that relates the zeros of 
A(?) to the eigenvalues of QP-': 

Lemma 2. yi # 0, - l /y i  is an eigenvalue of QP-' if and only if L(y i )  has zero 
as an eigenvalue. Moreover, they have the same algebraic multiplicity. 

Proof. This follows straightforwardly from the equation 

y - ' L ( y ) P - ' f  = QP- ' f  + r-'f (29) 

L' ( [a ,b l ) .  0 
and the fact that P-' f  satisfies the boundary conditions (5) for every f in 
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The following theorem states the relation between Det, and Det, that we are 
looking for: 

Theorem. 

prwf. If we call -l/yi the eigenvalues of QP-',  repeated as many times as 
indicated by their algebraic multiplicity, from equation (24) we get 

Det , ( l+yQP- ' )  = n ( 1 -  y/yi)e7/-i'. 

Comparing equation (31) with the factorization in equation (12) and taking into 
account the result of lemma 2, we see that 

(32) 
Detz(L(r)L-'(0)) = A(?) 

A ( 0 ) .  

Finally, from the definition (18) and equation (13) the theorem follows. U 

The relation between Det,L(y)/Det,L(O) and Det,(L(y)L-'(0)) for p 2 3 
can be established now immediately from the following property [5]:  

Det,+,( l+A) = e x p ( y T r ( A p )  1 Det , ( l+A) .  (33) 

Remark. Notice that in the case where qm-'(z) vanishes, the Fredholm determinant 
of 1 + yQP- '  also exists [7]. Then, from equation (U), one can write 

...I^ - - l j  

det(1 + yQP-') = e-i'r'vr JDe t , ( l+yQP- ' ) .  (34) 

Moreover, in this case the estimate for the order of A (  y )  can he reduced to p < 1/2. 
Then, Hadamard's theorem yields 

which is precisely the Fredholm determinant of 1 + y Q P - ' .  Tdking into account 
equations (32) and (34), we find that 

n(QP-1)  = a. (36) 

In the general case, the left-hand side of this equation does not make sense, but a 
is well defined from equation (13). Therefore, within our approach, it is natural to 
consider 01 as the regularized value of Tr(QP-'). 



6750 R E Gamboa et al 

Finally, we describe the relation between the method that we propose and the 
(-function regularization. In [lo], Forman was able to reduce the computation of 
the quotient of (-function regularized determinanu of elliptic operators defined on 
manifolds with boundary to the computation of another determinant, namely the 
Fredholm determinant of an operator related to the boundary values of the solutions 
of the original operators. In the case when the manifold is a one-dimensional closed 

. interval, and following our notation, his result reads 

where tr means trace of finite-dimensional matrices and R( z) is f if m is even; 
otherwise it is a projector onto the eigenspaces of impm(.) corresponding to the 
eigenvalues lying on one of the half-planes limited by a minimal growth ray of P and 
the opposite ray. 

When q,-l(z) = 0, the C and A-results agree exactly [lo], as it occurs for A 
and Fredholm determinants !7j. In the seneral case q,-:(z) + 0: the exponential 
factor in equation (37) can be. interpreted as another regularization of ' R ( Q P - ' )  
(notice that the notation in this equation is quite suggestive). 

A relation between Det, and the C-function regularization was found for a more 
general case without reference to any other method [ll],  and it agrees with the 
relation that follows from equations (30) and (37). 

One can see from equations (30) and (37) that the only difference between 
the three different approaches we have discussed is a factor exp(cr), being c 7- 
independent. As we mentioned in the introduction, one should have expected this 
fact because the three extensions respect the same relation between zeros of the 
determinant and zero modes of L(y). For vanishing qm-l(z), when 'R(QP-')  
makes sense, all these factors dissapear and every approach gives the same answer. 
When P ( Q P - ' )  does not exist, it should be regularized, and the factors relating to 
the different approaches reflect the fact that different regularizations can be used for 
this trace. Moreover, when the manifold dimension is higher than one, even higher 
powers of L(y)L(O)- '  - 1 have divergent traces, so that one should expect factors of 
the form exp(rg(7))  relating different regularizations, where g is a polynomial in 7. 
When applying any one of these methods to a specific problem where divergent traces 
are present, one should adopt a renormalization prescription. This is done by adding 
counterterms to be k e d  later on, one corresponding to each divergent trace. Even 
though different approaches for the determinant will require diffcrent counterterms 
to satisfy the same renormalization criteria, the final result will be independent of the 
chosen extension. 

As we stated at the beginning of this section, equation (37) ensures that the A -  
determinant differs from the C-function determinant by a finite local renormalization. 

renormalization, in the sense that the regularized determinant corresponds tO the 
unrenormalized one times 'local' counterterms. Indeed, as the (-function result 
is known to satisfy this general principle (see 1121 for a full discussion), then our 
prescription satisfies this requirement too. 

n.5 g;a:axp- that fcrfier js Ecs%tcnt the gegere! nrinrinlm of 
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4. One simple example 

We present in this section a simple example in which everything can be computed 
explicitly. It corresponds to the operators 

(38) 
d2 

dx2 
P = - - + m 2  

d Q = i -  
dx  (39) 

with periodic boundary conditions on the interval [0,2x]. This means that Mu and 
MZr can be chosen as the real 2 x 2 matrices 

Mu = 1 (40) 

MZr = -1. (41) 

Using the fundamental solution of equation (7) satisfying the initial conditions (9) we 
obtain 

~ ( y ) = - 4 x e ' " ' s i n ( f ( y t d ~ ) ) s i n ( f ( y - d ~ ) ) .  (42) 

Thus using the definition (18) we find 

sin ('cy + d w ) )  sin ('(y - d-1) 
(43) 

DetAL(y) = 
Det,L(O) sinh2(mrr) 

?b compute both the 2-determinant and the {-determinant, we first note that the 
eigenvalues of L(y)  are 

X , = k 2 - y k t m 2  k E Z .  (44) 

In terms of the eigenvalues, the 2-determinant is given by equation (24), and 
reads 

where the product can be evaluated using the formula 

m 

sinz = z n  (I - $). 
j = 1  
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The difference between the  right-hand sides of equation (43) and equation (47) is the 
factor exp(ixy). It agrees with its expected value (cf equation (30)) 

R E Gamboa et a1 

where 

C(s) = n ( L - s )  

1 

k=-m 

for Re(s) > 4. Using the numeric Riemman C-function, C(s) c a n  be analitically 
extended to the whole complex plane as a meromorphic function. Following these 
steps we find 

?b facilitate the comparison we write down the ratio 

The exponential factor that relates the results (43) and (53) is correctly given by 
equation (37) 
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